Atomic-Scale Observation of Migration and Coalescence of Au Nanoclusters on YSZ Surface by Aberration-Corrected STEM
نویسندگان
چکیده
Unraveling structural dynamics of noble metal nanoclusters on oxide supports is critical to understanding reaction process and origin of catalytic activity in heterogeneous catalysts. Here, we show that aberration-corrected scanning transmission electron microscopy can provide direct atomic-resolution imaging of surface migration, coalescence, and atomic rearrangement of Au clusters on an Y:ZrO₂ (YSZ) support. The high resolution enables us to reveal migration and coalescence process of Au clusters at the atomic scale, and to demonstrate that the coalesced clusters undergo a cooperative atomic rearrangement, which transforms the coherent into incoherent Au/YSZ interface. This approach can help to elucidate atomistic mechanism of catalytic activities and to develop novel catalysts with enhanced functionality.
منابع مشابه
Modification of Deposited, Size-Selected MoS2 Nanoclusters by Sulphur Addition: An Aberration-Corrected STEM Study
Molybdenum disulphide (MoS2) is an earth-abundant material which has several industrial applications and is considered a candidate for platinum replacement in electrochemistry. Size-selected MoS2 nanoclusters were synthesised in the gas phase using a magnetron sputtering, gas condensation cluster beam source with a lateral time-of-flight mass selector. Most of the deposited MoS2 nanoclusters, a...
متن کاملCoalescence and sintering of Pt nanoparticles: in situ observation by aberration-corrected HAADF STEM.
An aberration-corrected JEOL 2200FS scanning-transmission electron microscope (STEM), equipped with a high-angle annular dark-field detector (HAADF), is used to monitor the coalescence and sintering of Pt nanoparticles with an average diameter of 2.8 nm. This in situ STEM capability is combined with an analysis methodology that together allows direct measurements of mass transport phenomena tha...
متن کاملAtomic Scale Verification of Oxide-Ion Vacancy Distribution near a Single Grain Boundary in YSZ
This study presents atomic scale characterization of grain boundary defect structure in a functional oxide with implications for a wide range of electrochemical and electronic behavior. Indeed, grain boundary engineering can alter transport and kinetic properties by several orders of magnitude. Here we report experimental observation and determination of oxide-ion vacancy concentration near the...
متن کاملA generalized electrochemical aggregative growth mechanism.
The early stages of nanocrystal nucleation and growth are still an active field of research and remain unrevealed. In this work, by the combination of aberration-corrected transmission electron microscopy (TEM) and electrochemical characterization of the electrodeposition of different metals, we provide a complete reformulation of the Volmer-Weber 3D island growth mechanism, which has always be...
متن کاملMetastability and structural polymorphism in noble metals: the role of composition and metal atom coordination in mono- and bimetallic nanoclusters.
This study examines structural variations found in the atomic ordering of different transition metal nanoparticles synthesized via a common, kinetically controlled protocol: reduction of an aqueous solution of metal precursor salt(s) with NaBH₄ at 273 K in the presence of a capping polymer ligand. These noble metal nanoparticles were characterized at the atomic scale using spherical aberration-...
متن کامل